Cyclin A-associated kinase activity is needed for paclitaxel sensitivity.
نویسندگان
چکیده
Cyclin A-associated kinases, such as cyclin-dependent kinase 2 (CDK2), participate in regulating cellular progression from G(1) to S to G(2), and CDK2 has also been implicated in the transition to mitosis. The antitumor properties of CDK inhibitors, alone or in combination with taxanes, are currently being examined in clinical trials. Here, we examined whether the activity of kinases associated with cyclin A (such as CDK2) is important in determining cellular sensitivity to paclitaxel, a taxane and mitotic inhibitor used in chemotherapy for breast and ovarian cancer. We used adenoviral suppression or overexpression to manipulate the expression of CDK2 and cyclin A in one breast cancer and three ovarian cancer cell lines with different sensitivities to paclitaxel and assessed protein expression, kinase activity, cell cycle distribution, and sensitivity to paclitaxel. Transfection of a dominant-negative (DN)-CDK2 evoked resistance to paclitaxel by preventing cellular progression to mitosis through loss of CDK1 activity. Reexpression of wild-type CDK2 in DN-CDK2-transfected cancer cells restored CDK2 activity but not paclitaxel sensitivity. However, expression of cyclin A in DN-CDK2-transfected cells restored their sensitivity to paclitaxel. Although CDK2 activity was not directly involved in paclitaxel sensitivity, cyclin A-associated kinases did up-regulate CDK1 via phosphorylation. We conclude that cyclin A-associated kinase activity is required for these cells to enter mitosis and undergo paclitaxel-induced cell death. Combining taxane chemotherapy with any drug targeting cyclin A-associated kinases (e.g., pure CDK2 inhibitors) should be done with caution, if at all, because of the potential for enhancing taxane resistance.
منابع مشابه
Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint.
Paclitaxel stabilizes microtubules, causing mitotic arrest and activating the spindle assembly checkpoint. We determined whether suppression of the checkpoint genes Mad2 and BubR1 affects paclitaxel resistance and whether overexpression of Mad2 protein in checkpoint-defective cells enhances paclitaxel sensitivity. Suppression of Mad2 and BubR1 in paclitaxel-treated cancer cells abolished checkp...
متن کاملDamd 17 - 03 - 1 - 0179 Title : 2 -
2-Methoxyestradiol (2-ME) is an endogenous metabolite of estradiol with promise for cancer chemotherapy, including advanced prostate cancer. We have focused on events related to cell cycle arrest (G1 and G2/M) and induction of apoptosis in human prostate cancer cells. Treatment with 2-ME increased cyclin B1 protein and its associated kinase activity followed by later inhibition of cyclin A-depe...
متن کاملA CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS
The KRAS gain-of-function mutation confers intrinsic resistance to targeted anti-cancer drugs and cytotoxic chemotherapeutic agents, ultimately leading to treatment failure. KRAS mutation frequency in lung adenocarcinoma is ~15-30%. Novel therapeutic strategies should be developed to improve clinical outcomes in these cases. Deregulation of the p16/cyclin-dependent kinase (CDK) 4/retinoblastoma...
متن کاملEphrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway
Ephrin type‑A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5‑8F cells, compared with control cells exposed to the same concentr...
متن کاملInhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519
An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 4 7 شماره
صفحات -
تاریخ انتشار 2005